0=16t^2+72t+3

Simple and best practice solution for 0=16t^2+72t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+72t+3 equation:



0=16t^2+72t+3
We move all terms to the left:
0-(16t^2+72t+3)=0
We add all the numbers together, and all the variables
-(16t^2+72t+3)=0
We get rid of parentheses
-16t^2-72t-3=0
a = -16; b = -72; c = -3;
Δ = b2-4ac
Δ = -722-4·(-16)·(-3)
Δ = 4992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4992}=\sqrt{64*78}=\sqrt{64}*\sqrt{78}=8\sqrt{78}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{78}}{2*-16}=\frac{72-8\sqrt{78}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{78}}{2*-16}=\frac{72+8\sqrt{78}}{-32} $

See similar equations:

| 2-14=3a+16 | | a-14=3a=16 | | (7x+5)+(6x+20)=180 | | -14+5x=-44+2x | | 1/6-5w/4=-4 | | 4a-8=2a+14 | | 4w−4=16 | | 5/3x+3/5=1/9 | | 11=2x+(3x+1) | | y/5+y/3=16 | | 32x-3=20 | | b2− 1=2 | | 4=x+42/9 | | 3x+20+5x+20+2x+40=360 | | -8x+8(1-5x)=-376 | | X+4x=1050 | | 2y-50+3y=180 | | 5(3x-2=7(2x+1) | | 0,9z+0,1z+5z=36-3z | | X+5x=1440 | | -1=v-8 | | 28−x/7+x+8=14 | | 9v=-45 | | 9v=-95 | | 0,7t-0,4t=2,4 | | (5x-4)+2x+x=180 | | (6x-1)/1=1 | | -2x+7-3x=3+5+4 | | 2x-4x+29=7-4x+29 | | x+2x+6x=360 | | 5x-4+7x=-x+8-3x | | 3-7x+10x-14=9-6×+9×-20 |

Equations solver categories